### Designing the Decarbonized, Reliable and Resilient Grid of the Future



### Sacramento, January 23, 2020

Angelina Galiteva Vice Chair Board of Governors California Independent System Operator, Founder Renewables 100 Policy Institute



California ISO - Public

Page 1

# Solar and wind attract 60% of new investment in power generating capacity



Source: bloomberg New Energy Finance Source: Bloomberg New Energy Finance Source: Bloomberg New Energy Finance

Source: Bloomberg New Energy Finance, <u>NEO 2017</u>

Source: Bloomberg New Energy Finance



#### FOSSIL FUEL DECLINE: ONLY ONE OIL COMPANY REMAINS IN THE TOP TEN LIST COMPANIES

Source: Forbes Fortune 5<u>00</u>

list, top ten companies by revenue

| 1978                                               | 1988                                                               | 1998                                                               | 2008                                                                                   | 2018                                                                 |
|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| General Motors<br>\$3337.5M                        | <b>IBM</b><br>\$5258.0M                                            | General Motors<br>\$178.17B                                        | Exxon Mobil<br><sup>\$466.28B</sup>                                                    | $\substack{	extsf{Walmart} \\ \$500.34B}$                            |
| $\underset{\$2719.4M}{IBM}$                        | Exxon Mobil<br>\$4840.0M                                           | $\begin{array}{c} {\bf Ford\ Motors}\\ {}^{\$153.62B} \end{array}$ | Walmart<br><sup>\$378.48B</sup>                                                        | Exxon Mobil<br><sup>\$244.36B</sup>                                  |
| Exxon Mobil<br>\$2423.0M                           | $\begin{array}{c} {\bf Ford\ Motors}\\ {}^{\$4625.0M} \end{array}$ | Exxon Mobil<br>\$122.38B                                           | $\underset{\$267.64}{\text{Texaco}}$                                                   | Berkshire Hathaway<br>\$242.14B                                      |
| $\frac{\textbf{Ford Motors}}{_{\$1672.8\text{M}}}$ | Texaco<br><sup>\$4407M</sup>                                       | Walmart<br><sup>\$119.30B</sup>                                    | Conoco Phillip<br><sup>\$246.18B</sup>                                                 | <b>Apple</b><br>\$229.23B                                            |
| General Electric<br>\$1088.2M                      | $\operatorname{GeneralMotors}_{\$3551.0\mathrm{M}}$                | General Electric<br>\$90.84B                                       | General Electric<br><sup>\$181.58B</sup>                                               | ${\displaystyle { {{\rm UnitedHealth}} \atop {{}^{{ m $201.16B}}}}}$ |
| $\frac{\textbf{Chevron}}{\$1016.4\text{M}}$        | General Electric<br><sup>\$2915.0M</sup>                           | $\underset{78.51\mathrm{B}}{\mathrm{IBM}}$                         | General Motors<br>\$148.98B                                                            | $\mathop{\mathrm{McKesson}}_{\$198.53\mathrm{B}}$                    |
| ${f Mobil} _{ m \$1004.7M}$                        | AT&T<br>\$2044.0M                                                  | $\mathop{\mathbf{Chrysler}}_{\$61.15\mathrm{B}}$                   | $\mathop{\mathbf{Ford}}\limits_{\$145.11\mathrm{B}}\mathop{\mathbf{Motors}}\limits_{}$ | $\mathop{\mathrm{CVS}}_{\$184.77\mathrm{B}}$ Health                  |
| Texaco<br><sup>\$930.8M</sup>                      | $\mathop{\mathrm{DuPont}}_{\$1786\mathrm{M}}$                      | <b>Mobil</b><br>\$59.98B                                           | <b>AT&amp;T</b><br>\$124.03B                                                           | Amazon.com<br><sup>\$177.87B</sup>                                   |
| Gulf Oil<br>\$752.0M                               | Chrysler<br><sup>\$1290M</sup>                                     | Altria Group<br><sup>\$56.11B</sup>                                | Bank of America<br>\$75.70B                                                            | AT&T<br>\$160.55B                                                    |
| Chrysler<br><sup>\$163.2M</sup>                    | Mobil<br>\$1258M                                                   | AT&T<br>\$53.26B                                                   | Citigroup, Inc.                                                                        | General Motors<br>\$157.31B                                          |

#### Price of renewables continue to decrease









### High Levels of Renewable Penetration Globally



Source: Bloomberg New Energy Finance, various

### U.S. Renewable Resources

Achieving 100% Renewables include:

- Grid modernization
- Storage options
- Transmission
- Behaviors/education
- Resources

....

- Cooperation



| Resource                 | Solar PV/CSP)                     | Wind                                                   | Geothermal                             | Water Power | Biopower |
|--------------------------|-----------------------------------|--------------------------------------------------------|----------------------------------------|-------------|----------|
| Theoretical<br>Potential | 155,000 GW (PV)<br>38,000GW (CSP) | 11,000 GW (onshore)<br>4,200 GW (offshore to 50<br>nm) | 38 GW (conventional)<br>4,000 GW (EGS) | 68 GW       | 62 GW    |

#### NEARLY 30% OF AMERICANS LIVE IN A COMMUNITY THAT IS GOING 100% CLEAN ENERGY



Source: EQ Research Policy Vista™Legislative Tracking Database as of March 15, 2019, California Energy States Alliance.

200 OF THE WORLD'S LARGEST COMPANIES HAVE COMMITTED TO 100% RENEWABLE ENERGY

amazon

Google

Microsoft



California's leaders are aggressively pursuing a low carbon future.

• Aggressive renewable energy goals



- Robust electric vehicles goal: 5.0 million by 2030, \$2.5B investment in new charging stations
- 10,000 MW of distributed generation by 2021; 1.3 GW of battery storage by 2024

Decarbonization is creating opportunities to develop a high renewables and high DER energy service industry.



### **CALIFORNIA CLEAN JOBS**



Source: AEE 2019 jobs study

### MORE CALIFORNIANS WORK IN THE SOLAR INDUSTRY THAN FOR ALL CA ELECTRIC UTILITIES COMBINED



Sources:

Solar Foundation, 2017 Solar Jobs Census

 U.S. Securities and Exchange Commission, Form 10-K, 2014 http://www.sec.gov/edgar/searchedgar/companysearch.html

# Electric industry in the midst of unprecedented change

- Driven by fast-growing mix of interrelated issues



### California ISO footprint is about 80% of California



- 72,461 MW of power plant capacity (net dependable capacity)
- 50,270 MW record peak demand (July 24, 2006)
- 31,208 market transactions daily
- ~26,000 circuitmiles of transmission lines
- 30 million people served
- 239 million MWh annually

Page 14

Page 14

### Average demand curve: March 2008 vs. March 2018





## The duck turns 10 years old: Actual results are approximately four years ahead of the original estimate



### Growth of renewables to achieve 60% by 2030 is expected to be largely solar

2008

### 35,000 30,000 25,000 20,000 MM 15,000 10,000 5,000 0

2018

Wind Solar Geothermal Small Hydro Biofuel

2030

Existing and Expected Renewable Build-Out Through 2030

Solar production complemented the hydro production during the drought years as compared to 2006, which was a high hydro year





California ISO - Public

Hybrid energy storage projects in the interconnection queue are dominated by solar + battery configuration

> Types of Energy Storage Projects Active in CAISO's Generation Interconnection Queue (as of September 05, 2017)



### Behind the meter solar is expected to grow by approximately 15,000 MW by 2030



### IOUs' NEM Solar Capacity by Territory and Location (As of March 31, 2018) All DER Technologies are in Play





|                                                                | 2013             | 2016/17          | Percent Change    |
|----------------------------------------------------------------|------------------|------------------|-------------------|
| Energy Efficiency (GWh)                                        | 1,693            | 3,197            | 89%               |
| Demand Response<br>(MW)                                        | 2,187            | 1,997            | -9%               |
| Behind-the-Meter PV<br>(MW)                                    | 2,102            | 5,900            | 180%              |
| Plug-in Electric Vehicle<br>(PEV) (number of<br>registrations) | 69,999           | 266,866          | 281%              |
| Distributed Advanced<br>Energy Storage (MW)                    | 54               | <u>350</u>       | 548%              |
| Microgrids (MW)                                                | <mark>122</mark> | <mark>390</mark> | <mark>220%</mark> |

### On Sunday April 21, 2019 the CAISO experienced a minimum net of 5,667 MW @ 14:37



- Maximum curtailment was 4,789 MW (31,989 MWh) of renewables
- Export as much as 2,000MW
- The CAISO continued to curtail solar during sunset to help reduce the 3-hour upward ramp
- Max simultaneous wind & solar was 11,598 MW at 14:36

California ISO - Public

CAISO has seen an explosive growth in large-scale battery storage capacity in the last five years U.S. Large-Scale Battery Storage Capacity by Region, 2012



Sources: U.S. Energy Information Administration, Form EIA-860M, <u>Preliminary Monthly Electric Generator Inventory</u>; U.S. Energy Information Administration, Form EIA-860, <u>Annual Electric Generator Report</u>



Page 23

CAISO has seen an explosive growth in large-scale battery storage capacity in the last five years

U.S. Large-Scale Battery Storage Capacity by Region, 2018



Sources: U.S. Energy Information Administration, Form EIA-860M, <u>Preliminary Monthly Electric Generator Inventory</u>; U.S. Energy Information Administration, Form EIA-860, <u>Annual Electric Generator Report</u>



## Batteries in wholesale markets deliver value in different timescales



Additional use-cases will add complexity and value



Source: Bloomberg NEF (CAISO Symposium-2018)



California ISO - Public

# A Energy System based 100% on renewable sources



Source: Harry Lehmann, 1996





### Electric Storage





Source H.Lehmann

### Power to storage / power to power

- In a renewable system storage is necessary to ensure a stable supply of electricity
- We need different storage solutions
  - For short term to compensate daily/several days-fluctuation
    - ✓ Load management (Power to X all sectors)
    - ✓ Battery storage
    - ✓ Pump storage
  - And long term to compensate weeks/months/years-fluctuation
    - ✓ Chemical storage:

renewable hydrogen storage (η=42%)

renewable methane storage ( $\eta$ =35%)







### 100% RE Germany Study of UBA Different Storage Systems – EU and Germany



### Imports and gas-fired generation are being relied upon to meet ramping and late afternoon peaks

- Increasing behind the meter solar is also pushing the "system peak" to later in the day, further muting the capacity benefit of grid-connected solar.
- Example: gas was available, but wind made an appearance and met part of the need during declining solar output.



# California has a variety of advanced energy storage technologies operating today

- 1) Thermal Energy Storage with Ice
- 2) Vehicle-to-grid demonstration
- 3) Molten Sulfur Energy Storage Used for Back-up Power
- 4) Revolutionizing Grid-connected Energy storage
- 5) Integrated Solar Photovoltaic Energy storage
- 6) New Life for Electric Vehicle Batteries
- 7) Rechargeable Electrolytes
- 8) Capturing Wind
- 9) Lithium-Ion Battery Supports Renewable Energy Integration
- 10) Hybrid Technology
- 11) Hydrogen Electrolytic (Future under SB 1369)



### Existing Storage in California





32

# The fleet of the future must provide essential grid services traditionally provided by a conventional fleet

|           | Test                                                                                                                                                                                                                                                                                                                                        | Performance |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ping      | Ramp its real-power output at a specified ramp-rate                                                                                                                                                                                                                                                                                         |             |
| Ram       | Provide regulation up/down service                                                                                                                                                                                                                                                                                                          | ×           |
| Voltage   | <ul> <li>Provide reactive power support in various modes <ul> <li>Control a specified voltage schedule</li> <li>Operate at a constant power factor</li> <li>Produce a constant level of MVAR</li> <li>Provide controllable reactive support (droop setting)</li> <li>Capability to provide reactive support at night</li> </ul> </li> </ul> | ×           |
| Frequency | <ul> <li>Provide frequency response for low frequency and high frequency events</li> <li>Control the speed of frequency response</li> <li>Provide fast frequency response to arrest frequency decline</li> </ul>                                                                                                                            | ×           |



### A suite of solutions are necessary

| ~~ |  |
|----|--|
|    |  |
|    |  |
|    |  |
|    |  |

**Storage** – increase the effective participation by energy storage resources.



Western EIM expansion – expand the western Energy Imbalance Market.



**Demand response** – enable adjustments in consumer demand, both up and down, when warranted by grid conditions.



**Regional coordination** – offers more diversified set of clean energy resources through a cost effective and reliable regional market.



**Time-of-use rates** – implement time-of-use rates that match consumption with efficient use of clean energy supplies.



Electric vehicles – incorporate electric vehicle charging systems that are responsive to changing grid conditions.



**Renewable portfolio diversity –** explore procurement strategies to achieve a more diverse renewable portfolio.



Flexible resources – invest in fastresponding resources that can follow sudden increases and decreases in demand.





|   |  |  |   |  |   |   |   |  |  |  |  |  |  |  |  |  |  |  | ÷ |  |
|---|--|--|---|--|---|---|---|--|--|--|--|--|--|--|--|--|--|--|---|--|
| - |  |  | - |  | - |   | - |  |  |  |  |  |  |  |  |  |  |  |   |  |
| - |  |  | - |  |   |   | - |  |  |  |  |  |  |  |  |  |  |  |   |  |
| - |  |  | - |  | - | - | - |  |  |  |  |  |  |  |  |  |  |  |   |  |
| - |  |  | - |  |   |   | - |  |  |  |  |  |  |  |  |  |  |  |   |  |
|   |  |  | - |  |   |   | - |  |  |  |  |  |  |  |  |  |  |  |   |  |
|   |  |  |   |  |   |   |   |  |  |  |  |  |  |  |  |  |  |  |   |  |

### Global automakers are investing billions in electrification

Electrification investments announced by selected automakers

**Billion USD** 

Demand outlook



Source: BloombergNEF



### Electric vehicles will make up the majority of new passenger vehicle sales by 2040 Global long-term passenger vehicle sales by drivetrain

Million vehicles



Source: BloombergNEF

### More Cleantech VC Investment into CA than all of Europe and China Combined



