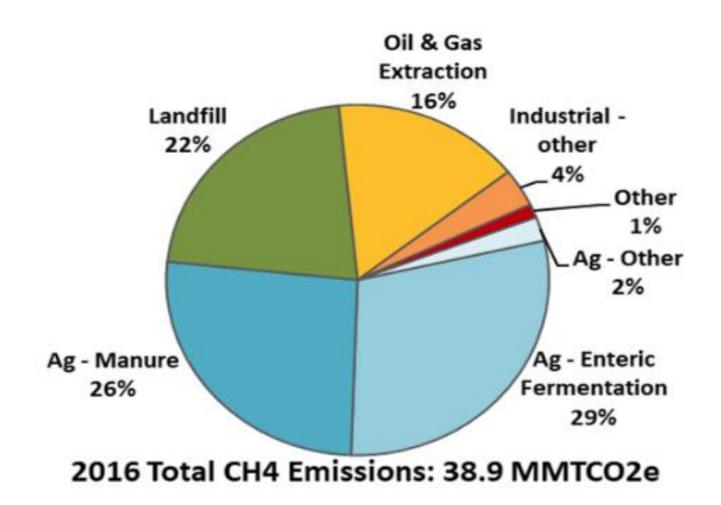
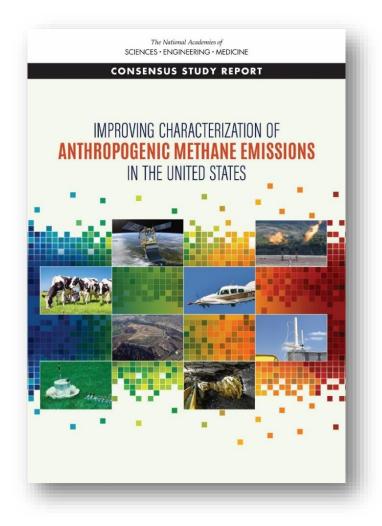
Feed Additives: Can they Reduce Methane and Improve Your Bottom Line?

Ermias Kebreab

Professor, Sesnon Endowed Chair University of California, Davis

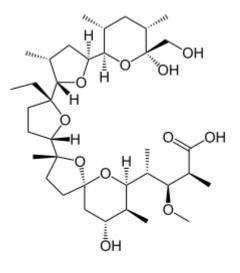

Sacramento, Nov. 28, 2018



Methane Emissions in California

Feed Additives

- Rumen Modifiers
 - Ionophores
 - Plant Bioactive compounds
 - Direct Fed Microbials
 - Dietary Lipids
- Inhibitors/Electron receptors
 - Nitrates
 - 3-nitrooxypropanol
 - Organic acids



Ionophores

Monensin in beef and dairy in North America

Α	Author(s) and Year	CTL_CH4 (g/d)	Monen_CH4 (g/d)	Stan	dardized MD [95% CI]
	Grainger et al., 2010 (Exp 1)	433	438	-	0.4[-0.4, 1.1]
	Grainger et al., 2010 (Exp 2)	466	470	H ■ H	0.2[-0.7, 1.0]
	Hamilton et al., 2010	223	236	1- ■	2.2[1.1, 3.4]
	Grainger et al., 2008 (Exp 1)	309	306	⊢ •⊢	-0.1[-1.1, 0.8]
	Grainger et al., 2008 (Exp 2)	376	386	}■ +	0.8[0.1,1.5]
	Waghorn et al., 2008	343	336	•	-0.1[-0.8, 0.6]
	Odongo et al., 2007	459	429	⊢•⊣	-3.7 [-5.1 , -2.4]
	Van Vugt et al., 2005 (Exp 1)	179	158	⊢	-4.4 [-5.7 , -3.1]
	Van Vugt et al., 2005 (Exp 2)	246	223	⊢= ⊣	-3.6 [-4.7 , -2.4]
	Van Vugt et al., 2005 (Exp 3)	333	309	⊢ ∎ ⊣	-3.3 [-4.3 , -2.2]
	Van Vugt et al., 2005 (Exp 4)	350	356	H■H	1.8[0.9, 2.6]
				-6 -3 0 3 6	
			Sta	ndardized Mean Differe	ence

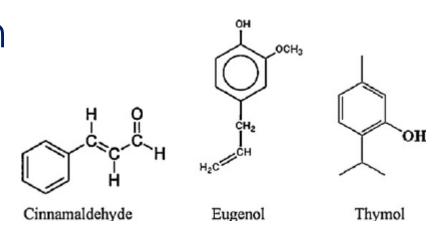
(Appuhamy et al. 2013)

Plant Bioactive Compounds

- Tannins and saponins show promise
- Grape pomace contains tannins and may reduce emissions

	Treatment				
Parameter ²	CON	DGM	EGM		
Number of cows CH ₄ (g/cow per day) CH ₄ (g/kg of DMI) CH ₄ (g/kg of milk) Milk yield (kg/d)	11 470 ^a 26.1 ^a 35.3 ^a 13.4 ^{ab}	10 375 ^b 20.2 ^c 26.1 ^b 15.0 ^a	9 389 ^b 21.5 ^b 35.2 ^a 11.5 ^b		

(Moate et al. 2014)

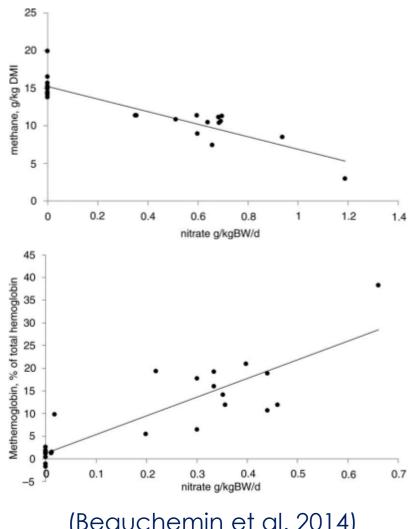


PBC (essential oils/oregano)

- Up to 27% reduction was reported by Hristov et al. (2013)
- Effects on methane production are inconsistent
- Results from in vitro continuous culture studies suggest that rumen microbial populations may adapt to essential oils

(Benchaar et al. 2018)

PBC (Mootral)


- Made from allicin (garlic extract)
 and citric extract
- Most work conducted in vitro shows anti-methanogenic effect
- In ewes, allicin reduced methane emissions (Ma et al. 2016)
- New study conducted at UC Davis (results still in preparation)

Inhibitors (Nitrates)

- Decreased 16% methane production(and yield)
- This is less than full theoretical potential (28%)
- Milk yield or energy retention was not affected
- Nitrate fed cows had greater methemoglobin levels

(van Zijderveld et al. 2011)

(Beauchemin et al. 2014)

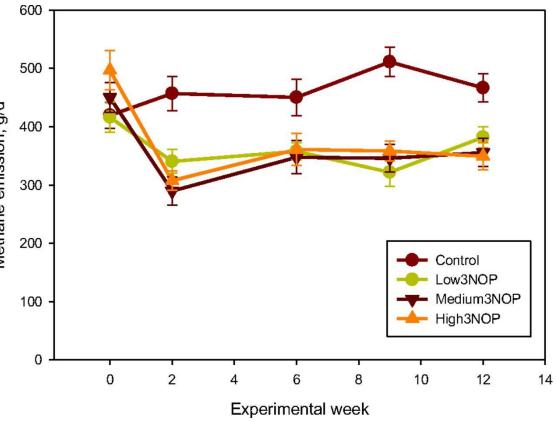
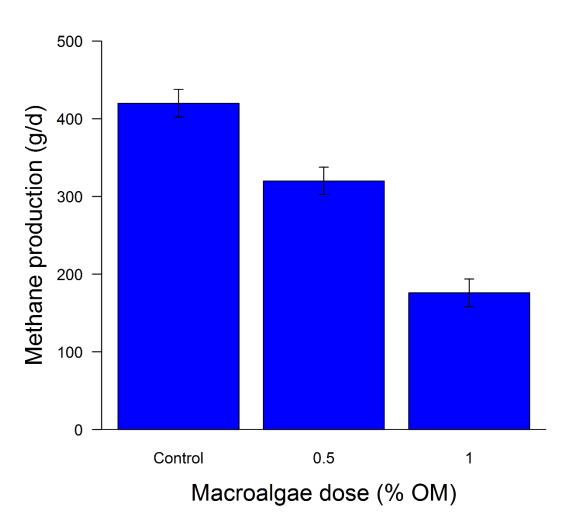

Inhibitors (NOP)

Table 2. Estimates of overall 3-nitrooxypropanol (NOP) effect size and of explanatory variables¹ from random- and mixed-effect models for

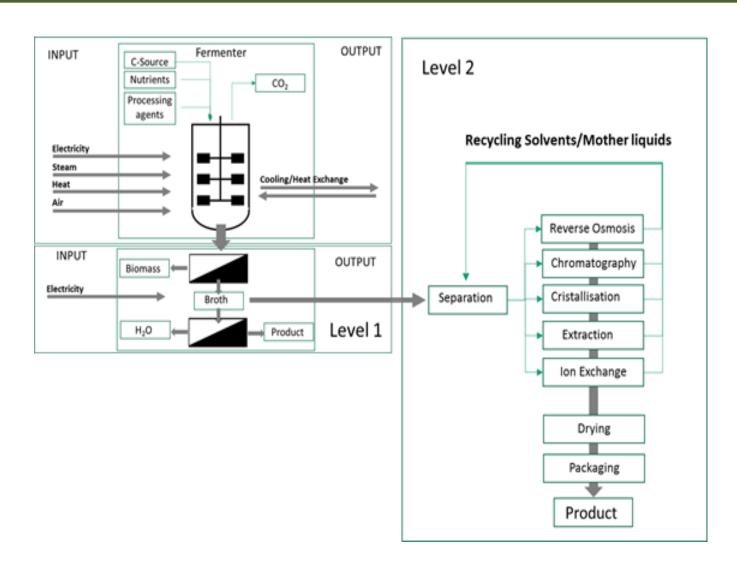
relative mean difference² (MD) in CH₄ production (g/d) and yield (g/kg of DMI)

	CH_4 production		
Variable and model	Mean	SE	P-value
Random-effect model			
Overall NOP effect size	-32.5	5.74	<0.001 <0.001 0.016
Mixed-effect model, 1 explanatory variable ³			
Overall NOP effect size	-30.5	4.79	< 0.001
NOP dose (mg/kg of DM)	-0.176	0.0441	0.016
Final mixed-effect model ⁴			
Dairy cattle	-39.0	5.40	0.002
Beef cattle	-22.2	3.33	0.002 0.003
NOP dose (mg/kg of DM)	-0.256	0.0550	0.006
NDF content (g/kg of DM)	0.164	0.0330	0.016

(Dijkstra et al. 2018)


(Hristov et al. 2015)

Inhibitors (Seaweed)



Lifecycle Analysis

VERSION 1

Environmental performance of pig supply chains

Guidelines for assessment

VERSION 1

Environmental performance of animal feeds supply chains

Guidelines for assessmen

Conclusion

- Several solutions are being developed:
 - Rumen modifiers
 - Inhibitors
- In the next 5 years we will have additives (or combination thereof) on the market that will reduce enteric methane emissions by at least 30% (net)

Acknowledgment

Thank You!

Questions?

Ermias Kebreab <u>ekebreab@ucdavis.edu</u>

