Progression of Battery Capabilities and Costs

Year	Battery Type	Energy Density (Wh/kg)	Cell Weight for 300- Mile Range* (kg)	Cell Cost/kWh (2020 Dollars)	Cell Cost for 300-Mile Pack
1995	Sealed Lead-Acid	25	37,500	\$200	\$187,500
2000	Nickel Metal Hydride	50	18,750	\$300	\$281,250
2004	Nickel Sodium Chloride	94	9,973	\$1,000	\$937,500
2008	Lithium Iron Phosphate – Early	100	9,875	\$1,700	\$1,593,750
2015	Lithium Iron Phosphate – Midterm	100	9,875	\$350	\$328,125
2015	Nickel Manganese Cobalt – Leaf	160	6,172	\$250	\$234,375
2020	Lithium Iron Phosphate – Advanced	160	6,172	\$200	\$187,500
2020	Nickel Cobalt Aluminum – Tesla 3	248	3,982	\$200	\$187,500
2025(?)	NMC/NMA(?)	300(?)	3,292	\$100(?)	\$93,750

^{* 300-}mile range is for a transit bus or Class 8 truck using an average of 2.5 kWh/mile, and assumes 80% battery discharge limit (battery weight and cost will be lower for more efficient vehicles or batteries capable of deeper discharge).

Note: Cell integration costs and total battery subsystem weight can vary, depending on cell size and integration complexity

