

CYLINDERS SERVICE LIFE

NGV GLOBAL / ACT EXPO LONG BEACH CONVENTION CENTER 2014

ARGENTOIL S.A.
JUAN CARLOS FRACCHIA
PRESIDENT

STANDARDS

COMPARISON TABLE OF RULES FOR A STEEL CYLINDER									
REQUIREMENTS	IRAM 2526:2005	ISO 4705:1983-D	NZS 5454	NGV2 – T1	ISO 11439 – T1				
SAMPLE APPROVAL OF EACH LOT	Traction, Resilience, Bending or crushing. Burst	Traction, Resilience, Bending or crushing. Burst	Traction, Resilience, Bending or crushing. Hardness cycled + Burst	Traction. Resilience. Hardness Burst Cycled. Painting U.S.	Traction. Resilience. Hardness Burst Cycled. Painting U.S				
SERVICE LIFE	NO	NO	NO	25 years max	20 years max				
OVERVIEW NON-DESTRUCTIVE TESTING (FLOWS).	NO	NO	YES	YES	YES				
CYLINDER INTERNAL PROTECTION (Corrosion)	NO	NO	YES	YES	YES				
TEST FIRE	NO	NO NO		YES	YES				
PERMEANT TEST	NO	NO	NO	YES	YES				
METHOD OF DETERMINATION OF CRITICAL AREAS OF FATIGUE	NO	NO	NO	YES	YES				
DETERMINATION OF FAILURE FOR NON-DESTRUCTIVE TESTING.	STRUCTIVE		NO	YES	YES				
RELIEF DEVICE AND PROTECTION FOUNDATION	NO	NO	NO	YES	YES				
TEST LOSS BEFORE BREAK	NO	NO	NO	YES	YES				

COMPARISON BETWEEN REQUIRED CONDITIONS FOR STANDARD ISO 11439 AND NGV2 ABOUT CYCLING TESTS FOR CYLINDERS.

REQUIREMENTS	ISO 11439:2000	NGV2:2000	DELTA		
	ECE R 110				
MINIMUM NUMBER OF CYCLES FOR EACH YEAR OF DESIGN LIFE	1.000	750	33%		
MINIMUM QUANTITY OF CYCLES REQUIRED FOR THE STANDARD	15.000	11.250	33%		
MINIMUM LIFE REQUIRED	15 years	15 years	0		
PRESSURE RANGE INTO	20 – 260 bar(1)	26 – 259 bar(2)	_		
WHICH CYLINDERS SHOULD BE CYCLED IN PERIODICAL TESTS (BATCH TESTS)	(Maximum Cycles Rate 10 cycles/min)	(Maximum Cycles Rate 10 cycles/min) Point 12.5.2.1			
	Point A-13.				
MAX. LIFE SERVICE	20	25	-20%		

"...A consideration in the design of CNG cylinders is the number of pressure cycles a cylinder may experience from filling operations. CNG cylinders will experience a significantly greater number of pressure cycles than cylinders used in industrial service. Repeated pressurization cycles will eventually result in the growth of fatigue cracks in metal cylinders and liners. A "worst-case" pressure cycle life was defined as 1000 pressure cycles per year of life, i.e. 15000 pressure cycles for a 15-year-design life. In the development of ISO 11439 some traditionalists wanted an excessive pressure cycle life requirement applied to the performance testing of designs ("But we have always done it that way!"); for example, requiring a 15-year design to provide a minimum 30000 pressure cycles in performance tests..."

^{*} Craig Webster, ISO Bulletin, February 2001

STANDARDS USED

- IRAM 2526 Edition: 1972 / 1992 / 1997 and 2005
- ISO 4705 Edition: 1983;
- CAN/CSA B399 / DOT 3 AA;
- ANSI/IAS NGV2 Edition: 1992 / 2007;
- EB 926A; DM12/09/1925;
- CTC 3AA; ANNCC / IGMC;
- NBR 12790 A; BS 5045 Pat1 1983;
- NZS 5454: 1989
- **COVENIN 3226**

MOST OF THE MENTIONED STANDARDS DO NOT ESTABLISH

- Maximum service life of the cylinder.
- Degree of cleaning of the raw material (steel and aluminum).
- Chemical composition of the gas.
- Determination of the maximum size of admissible defect.
- Design based on the LBB principle.
- Bonfire Test
- Penetration Test
- Extreme temperatures test

GNC SYSTEM IN ARGENTINA

- The state regulates and audits (ENARGAS)
 - Administrative regulation of all Technical activities.
 - Regulation of Rules of application.
 - Strong controls and severe penalties on those who deviate from the system.
- The system is based on subjects defined by local regulations.
 - Control Agencies.
 - Audit and certify all the subjects of the system.
 - Parts manufacturers.
 - Conversion Equipment Producers.
 - Approves separate parts from different manufacturers ensuring that works in conjunction.
 - Installation Workshops.
 - Assemble CNG equipment.
 - Performs annual reviews of the installed equipment, enabling an additional year of service.
- Filling Stations.
- Technical Professionals.
 - Support the actions of the subjects of the system.
- The subjects of the system, have joint responsibility.
- The cylinders are reviewed every 5 years. (CRPC)
 - According to statistics INFLEX CRPC, 0.7% of the cylinders are rejected / condemned by technical problems. (2003 2008; 37122 reviews)
 - After the expiration of five years, the vehicle can not load GNC.
- Computer system that traces the history of CNG equipment once installed.
 - Annual review of the entire set of pieces of equipment that enables another year CNG load.
 - Cylinder certified reviews.
 - Vehicle data.
 - Owner's details

MANUFACTURERS WHOSE CYLINDERS WERE INSTALLED IN ARGENTINA

- ARGENTOIL SA
- CHERTERFIELD
- CILBRAS
- EUROCIL
- IMZ
- KIOSHI COMPRESIÓN
- KALVANCO
- MAT INCENDIO
- SARAVIA
- EKC
- MESCO GAS
- TAYLOR WHARTON
- NORRIS
- JP
- JMAR
- BOGAP

- ANSI
- CIDEGAS
- FABER
- GIFEL
- IMPROCIL
- LUIS PASQUINELLI e Hijos
- ECOTEMP
- PISL
- SITEA
- SIMMEL
- WORTHINGTON
- NI INDUSTRIES
- ITMAR
- DALMINE
- TEXCOM

MANUFACTURERS WHOSE CYLINDERS WERE INSTALLED IN ARGENTINA THAT DISAPPEARED

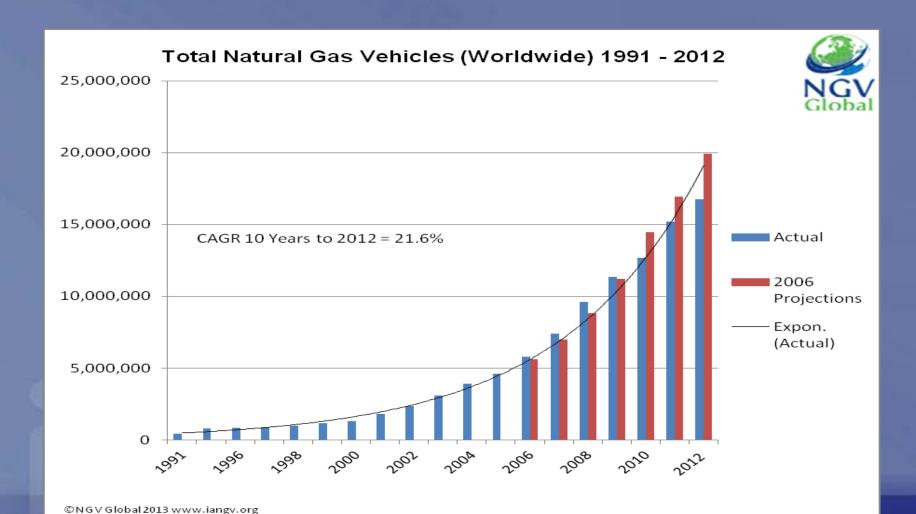
- IMZ (Italia)
- BOGAP (Italia)
- SITEA (Argentina)
- SARAVIA (Argentina)
- KALVANCO (Argentina)
- PISL (Argentina)
- CHESTERFIELD (Inglaterra)

- SIMMEL
- ITMAR
- JMAR
- NI INDUSTRIES
- ANSI (Argentina)
- ECOTEMP (Rusia)
- BRUNSWICK (Usa)

This loss of responsible of the system, leaves users stranded in case of accident, and is also the cause of disappearance of any of them, either by an accident resulting from a failure of their products

CYLINDERS IN SERVICE

- More than 17.000.000 of vehicles in the world use a NGV system. The 15 % of this amount is placed in Argentina.
- Particularly in Argentina with 30 years of historical NGV application system, this one is built on cylinders from 31 different manufacturers, of which today there <u>only remain</u> open about 16 manufacturers.
- This lack of presence generates a loss of people responsible and then the undercover of actual customers of this product against quality problems or incidents.
- It's necessary to explain that some of them disappeared due to incidents that came from the failures in their products
- Those responsible disappears of the system, but also traceability is lost.


REGIONAL GROWTH

Global and Regional Growth - NGVs													
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	NOV Noveles	4.040.044	0.000.004	0.000.040	0.000.004	4 000 450	5 700 044	7 444 077	0.040.440	44 000 077	40.004.040	45 400 704	40.700.000
ALL REGIONS	NGV Numbers	1.812.344	2.369.094	3.098.213	3.930.601	4.626.156	5.798.611	7.411.677	9.619.449	11.366.377	12.681.619	15.182.731	16.733.098
	increase compared to previous year		30,7%	30,8%	26,9%	17,7%	25,3%	27,8%	29,8%	18,2%	11,6%	19,7%	10,2%
Average growth over	er 10 years (CAGR)	21,6%											
REGIONAL GROWT	Ή												
ASIA-PACIFIC													
	NGV Numbers	290.660	462.665	707.528	899.075	1.167.761	1.840.593	2.812.076	4.508.012	5.891.043	6.849.408	8.790.030	9.780.864
	increase compared to previous year		59,2%	52,9%	27,1%	29,9%	57,6%	52,8%	60,3%	30,7%	16,3%	28,3%	11,3%
Average growth over	er 10 years (CAGR)	35,7%											
EUROPE	NGV Numbers	418.241	454.328	547.549	585.174	600.926	744.334	861.122	1.093.196	1.250.929	1.372.262	1.757.846	1.745.250
	increase compared to previous year		8,6%	20,5%	6,9%	2,7%	23,9%	15,7%	27,0%	14,4%	9,7%	28,1%	-0,7%
Average growth over	er 10 years (CAGR)	14,4%											
	NGV Numbers	134.932	153.547	137.551	141.754	140.952	131.069	129.312	129.214	130.000	131.217	133.875	140.235
NTH AMERICA	increase compared to previous year		13,8%	-10,4%	3,1%	-0,6%	-7,0%	-1,3%	-0,1%	0,6%	0,9%	2,0%	4,8%
Average growth over	er 10 years (CAGR)	-0,9%											
		2015			0.045.465			0.504.45		0.051.05	1.00=.0	10100:	
LATIN AMERICA	NGV Numbers	934.291	1.257.114	1.655.839	2.247.419	2.652.362	3.006.612	3.524.173	3.787.701	3.971.886	4.205.938	4.342.046	4.879.771
	increase compared to previous year		34,6%	31,7%	35,7%	18,0%	13,4%	17,2%	7,5%	4,9%	5,9%	3,2%	12,4%
Average growth over	er 10 years (CAGR)	14,5%											
AFRICA	NGV Numbers	34.220	41.440	49.746	57.179	64.155	76.003	84.994	101.326	122.519	122.794	158.934	186.978
	increase compared to previous year		21,1%	20,0%	14,9%	12,2%	18,5%	11,8%	19,2%	20,9%	0,2%	29,4%	17,6%
Average growth over	er 10 years (CAGR)	16,3%											

TOTAL VEHICULES WORLDWIDE

CONCLUSIONS

- THERE IS NO DESTRUCTIVE METHOD THAT GUARANTEES WITH ABSOLUTE CERTAINTY THE USEFUL LIFE IN THE INSPECTION AFTER THE PRODUCTION.
- THIS LEADS TO BE CAUTIOUS, MINDFUL OF INHERENT RISK.
- AS IT INCREASES THE LOAD CYCLES, FATIGUE CAN CAUSE CRACKS THAT COULD SPREAD CAUSING A BURST.
- THIS IS WHY IT'S A MUST TO SET USEFUL LIFE TO THOSE CYLINDERS PRODUCED UNDER PREVIOUS STANDARDS WHICH DO NOT FORESEEN THIS, BECAUSE THE PARK AGING WILL BECOME AN EXPONENTIAL GROWTH OF ACCIDENTS THEREFORE "RESTRICTIVE CHARACTER" MUST BE APPLIED.

ACCIDENTS

- http://www.infobae.com/2014/01/16/ 1537499-le-exploto-el-auto-cuandocargaba-gnc-perdio-las-piernas-yesta-grave-estado
- NGV cylinder blast injures pump worker.
- Eight vehicles badly damaged in explosion.
- A old substandard compressed natural gas (CNG) cylinder in a bus exploded at a PTT gas station in Samut Prakan yesterday, wounding a staff member and damaging seven other vehicles.

•THANK YOU!

• Paula.mora@inflex.com.ar